论文标题
基于模型的深层分辨率,不均匀
Deep Model-Based Super-Resolution with Non-uniform Blur
论文作者
论文摘要
我们提出了一种具有非均匀模糊的超分辨率的最先进方法。单像超分辨率方法试图从模糊,采样和嘈杂的测量结果中恢复高分辨率图像。尽管表现令人印象深刻,但现有技术通常会假设内核均匀。因此,这些技术并不能很好地概括为更一般的非均匀模糊情况。取而代之的是,在本文中,我们解决了空间变化的更现实和计算挑战性的案例。为此,我们首先基于线性化的ADMM拆分技术提出了一种快速的深插入算法,该算法可以通过空间变化的模糊来解决超分辨率问题。其次,我们将迭代算法展开到一个网络中,并端到端训练它。这样,我们克服了手动调整优化方案中涉及的参数的复杂性。我们的算法在一次训练中向大型空间变化的模糊内核,噪声水平和比例因素进行了一次训练后表现出色,并概括了。
We propose a state-of-the-art method for super-resolution with non-uniform blur. Single-image super-resolution methods seek to restore a high-resolution image from blurred, subsampled, and noisy measurements. Despite their impressive performance, existing techniques usually assume a uniform blur kernel. Hence, these techniques do not generalize well to the more general case of non-uniform blur. Instead, in this paper, we address the more realistic and computationally challenging case of spatially-varying blur. To this end, we first propose a fast deep plug-and-play algorithm, based on linearized ADMM splitting techniques, which can solve the super-resolution problem with spatially-varying blur. Second, we unfold our iterative algorithm into a single network and train it end-to-end. In this way, we overcome the intricacy of manually tuning the parameters involved in the optimization scheme. Our algorithm presents remarkable performance and generalizes well after a single training to a large family of spatially-varying blur kernels, noise levels and scale factors.