论文标题

SmartPortraits:人类肖像的深度式手持式智能手机数据集,用于状态估计,重建和综合

SmartPortraits: Depth Powered Handheld Smartphone Dataset of Human Portraits for State Estimation, Reconstruction and Synthesis

论文作者

Kornilova, Anastasiia, Faizullin, Marsel, Pakulev, Konstantin, Sadkov, Andrey, Kukushkin, Denis, Akhmetyanov, Azat, Akhtyamov, Timur, Taherinejad, Hekmat, Ferrer, Gonzalo

论文摘要

我们通过使用手持智能手机伴随着外部高质量深度摄像头,介绍了1000个人类肖像视频序列的数据集。收集到的数据集包含200人,以不同的姿势和位置捕获,其主要目的是弥合从智能手机和下游应用程序获得的原始测量之间的差距,例如状态估计,3D重建,视图合成,综合等。智能手机系统的子毫秒精度。在录制过程中,智能手机闪光灯用于提供定期的次要闪电来源。提供了最重要的人的准确面具及其对摄像机对齐精度的影响。为了评估目的,我们使用运动捕获系统比较了多种最新的摄像头对准方法。我们提供智能手机的视觉惯用基准来捕获肖像,在此报告中,我们报告了多种方法的结果,并激发了数据集中可用的提供的轨迹,视图合成和3D重建任务。

We present a dataset of 1000 video sequences of human portraits recorded in real and uncontrolled conditions by using a handheld smartphone accompanied by an external high-quality depth camera. The collected dataset contains 200 people captured in different poses and locations and its main purpose is to bridge the gap between raw measurements obtained from a smartphone and downstream applications, such as state estimation, 3D reconstruction, view synthesis, etc. The sensors employed in data collection are the smartphone's camera and Inertial Measurement Unit (IMU), and an external Azure Kinect DK depth camera software synchronized with sub-millisecond precision to the smartphone system. During the recording, the smartphone flash is used to provide a periodic secondary source of lightning. Accurate mask of the foremost person is provided as well as its impact on the camera alignment accuracy. For evaluation purposes, we compare multiple state-of-the-art camera alignment methods by using a Motion Capture system. We provide a smartphone visual-inertial benchmark for portrait capturing, where we report results for multiple methods and motivate further use of the provided trajectories, available in the dataset, in view synthesis and 3D reconstruction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源