论文标题
QAOA的性能和局限
Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models
论文作者
论文摘要
量子近似优化算法(QAOA)是一种用于组合优化的通用量子算法。我们分析了其预期的性能,并在无限尺寸限制中随机组合优化问题的集合上的任何恒定水平(层数)上证明了浓度属性。这些合奏包括混合自旋模型和稀疏随机超图上的最大$ q $ -xorsat。我们的分析可以通过鞍点的积分积分来理解。这是通过证明对多项式定理的概括而进行严格的,这是独立利益的技术结果。然后,我们证明,纯$ Q $ -SPIN型号在恒定水平上的性能渐近地匹配了最大$ q $ -XORSAT在随机稀疏Erdős-rényiHyperGraphs上的最大Q $ -XORSAT和每种大型常规超图。通过这种通信,我们确定QAOA在恒定水平上产生的平均值值在$ q $ -spin型号的最佳范围内限制在$ q \ ge 4 $时,并且甚至是。该限制给出了在可以看到整个图的新制度中量子算法的近似结果。
The Quantum Approximate Optimization Algorithm (QAOA) is a general purpose quantum algorithm designed for combinatorial optimization. We analyze its expected performance and prove concentration properties at any constant level (number of layers) on ensembles of random combinatorial optimization problems in the infinite size limit. These ensembles include mixed spin models and Max-$q$-XORSAT on sparse random hypergraphs. Our analysis can be understood via a saddle-point approximation of a sum-over-paths integral. This is made rigorous by proving a generalization of the multinomial theorem, which is a technical result of independent interest. We then show that the performance of the QAOA at constant levels for the pure $q$-spin model matches asymptotically the ones for Max-$q$-XORSAT on random sparse Erdős-Rényi hypergraphs and every large-girth regular hypergraph. Through this correspondence, we establish that the average-case value produced by the QAOA at constant levels is bounded away from optimality for pure $q$-spin models when $q\ge 4$ and is even. This limitation gives a hardness of approximation result for quantum algorithms in a new regime where the whole graph is seen.