论文标题

任何长度的拖鞋,gopakumar-vafa不变式和5D Higgs分支机构

Flops of any length, Gopakumar-Vafa invariants, and 5d Higgs Branches

论文作者

Collinucci, Andrés, De Marco, Mario, Sangiovanni, Andrea, Valandro, Roberto

论文摘要

Conifold是一个非伴动的calabi-yau三倍的基本示例,该calabi-yau三倍,在低能量下,在低能量的情况下会产生一个5D超强,这是由包裹在消失的球体上的M2-Brane实现的。我们开发了一种新型的量规理论方法,可以构建新的示例类别,将简单的触摸术推广到所谓的长度L = 1,...,6。该方法使我们能够自然读取Gopakumar-Vafa不变性。尽管它们具有与心爱的Conifold相似的特性,但预计这三倍将接受更高程度的M2结合状态。我们通过对GV不变性的计算来证明这一点。此外,我们通过计算其尺寸和风味群来充分表征相关的希格斯分支。借助我们的技术,我们提取了更多精致的数据,例如风味组下的高潮的电荷。

The conifold is a basic example of a noncompact Calabi-Yau threefold that admits a simple flop, and in M-theory, gives rise to a 5d hypermultiplet at low energies, realized by an M2-brane wrapped on the vanishing sphere. We develop a novel gauge-theoretic method to construct new classes of examples that generalize the simple flop to so-called length l=1,...,6. The method allows us to naturally read off the Gopakumar-Vafa invariants. Although they share similar properties to the beloved conifold, these threefolds are expected to admit M2-bound states of higher degree. We demonstrate this through our computations of the GV invariants. Furthermore we fully characterize the associated Higgs branches by computing their dimensions and flavor groups. With our techniques we extract more refined data such as the charges of the hypers under the flavor group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源