论文标题
三个vertex的主要图和树木的现实
Three-vertex prime graphs and reality of trees
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We continue the study of prime simple modules for quantum affine algebras from the perspective of $q$-fatorization graphs. In this paper we establish several properties related to simple modules whose $q$-factorization graphs are afforded by trees. The two most important of them are proved for type $A$. The first completes the classification of the prime simple modules with three $q$-factors by giving a precise criterion for the primality of a $3$-vertex line which is not totally ordered. Using a very special case of this criterion, we then show that a simple module whose $q$-factorization graph is afforded by an arbitrary tree is real. Indeed, the proof of the latter works for all types, provided the aforementioned special case is settled in general.