论文标题

部分可观测时空混沌系统的无模型预测

Optimal Heap Limits for Reducing Browser Memory Use

论文作者

Kirisame, Marisa, Shenoy, Pranav, Panchekha, Pavel

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Garbage-collected language runtimes carefully tune heap limits to reduce garbage collection time and memory usage. However, there's a trade-off: a lower heap limit reduces memory use but increases garbage collection time. Classic methods for setting heap limits include manually tuned heap limits and multiple-of-live-size rules of thumb, but it is not clear when one rule is better than another or how to compare them. We address this problem with a new framework where heap limits are set for multiple heaps at once. Our key insight is that every heap limit rule induces a particular allocation of memory across multiple processes, and this allocation can be sub-optimal. We use our framework to derive an optimal "square-root" heap limit rule, which minimizes total memory usage for any amount of total garbage collection time. Paradoxically, the square-root heap limit rule achieves this coordination without communication: it allocates memory optimally across multiple heaps without requiring any communication between those heaps. To demonstrate that this heap limit rule is effective, we prototype it for V8, the JavaScript runtime used in Google Chrome, Microsoft Edge, and other browsers, as well as in server-side frameworks like node.js and Deno. On real-world web pages, our prototype achieves reductions of approximately 16.0% of memory usage while keeping garbage collection time constant. On memory-intensive benchmarks, reductions of up to 30.0% of garbage collection time are possible with no change in total memory usage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源