论文标题
使用以自我为中心和以世界为中心的地图的主动域不变自定位
Active Domain-Invariant Self-Localization Using Ego-Centric and World-Centric Maps
论文作者
论文摘要
对视觉位置识别(VPR)的下一最佳观看(NBV)规划师的培训是自主机器人导航的根本重要任务,该任务是典型的方法是使用在目标域中收集的视觉体验作为训练数据。但是,对于实时的机器人应用,在日常导航中收集了各种视觉体验。我们通过采用小说{\ it domain-invariant} NBV计划来解决这个问题。假定基于卷积神经网络(CNN)的标准VPR子系统可用,并建议将其域名不变状态识别能力转移以训练域不变的NBV计划者。具体而言,我们将CNN模型可用的视觉提示分为两种类型:输出层提示(OLC)和中间层提示(ILC)。 OLC可在CNN模型的输出层上可用,旨在估算以世界为中心的视图坐标系的机器人状态(例如,机器人观点)。 ILC可在CNN模型的中间层中可用,作为相对于以自我为中心的视图的视觉内容(例如,显着图像)的高级描述。在我们的框架中,ILC和OLC被映射到国家向量,随后用来通过深入的增强学习来训练多视NBV计划。使用公共NCLT数据集的实验验证了提出方法的有效性。
The training of a next-best-view (NBV) planner for visual place recognition (VPR) is a fundamentally important task in autonomous robot navigation, for which a typical approach is the use of visual experiences that are collected in the target domain as training data. However, the collection of a wide variety of visual experiences in everyday navigation is costly and prohibitive for real-time robotic applications. We address this issue by employing a novel {\it domain-invariant} NBV planner. A standard VPR subsystem based on a convolutional neural network (CNN) is assumed to be available, and its domain-invariant state recognition ability is proposed to be transferred to train the domain-invariant NBV planner. Specifically, we divide the visual cues that are available from the CNN model into two types: the output layer cue (OLC) and intermediate layer cue (ILC). The OLC is available at the output layer of the CNN model and aims to estimate the state of the robot (e.g., the robot viewpoint) with respect to the world-centric view coordinate system. The ILC is available within the middle layers of the CNN model as a high-level description of the visual content (e.g., a saliency image) with respect to the ego-centric view. In our framework, the ILC and OLC are mapped to a state vector and subsequently used to train a multiview NBV planner via deep reinforcement learning. Experiments using the public NCLT dataset validate the effectiveness of the proposed method.