论文标题
具有两个吸收状态的动力学约束的开放多体系统中量子稳定稳定阶段和临界动力学的特征
Signatures of a quantum stabilized fluctuating phase and critical dynamics in a kinetically-constrained open many-body system with two absorbing states
论文作者
论文摘要
我们介绍并研究了一个开放的多体量子系统,在该系统中,动力学约束相干和耗散过程竞争。不一致的耗散动力学的形式受到与密度分类问题相关的流行病扩散或基于细胞automaton的计算的启发。它具有两个非裂开的吸收状态以及参数空间中的$ \ Mathcal {z} _2 $ - 对称点。连贯的演化受动力学约束的$ \ Mathcal {z} _2 $ - symmemetric多体汉密尔顿(Hamiltonian),与量子Xor Xor Xor Xor-Fredrickson-Andersen模型有关。我们表明,量子相干动力学可以稳定波动的状态,并且我们表征了这个活跃相位和吸收状态之间的过渡。我们还在$ \ MATHCAL {Z} _2 $ -SMMETRIC POINT上确定了相当特殊的行为。在这里,系统以动力学接近吸收状态歧管,该动力学遵循幂律,其指数与相干动力学的相对强度不断变化。我们的工作表明了连贯和耗散过程之间的相互作用以及对称约束如何导致高度复杂的非平衡进化,并且可能稳定相关经典问题中不存在的阶段。
We introduce and investigate an open many-body quantum system in which kinetically constrained coherent and dissipative processes compete. The form of the incoherent dissipative dynamics is inspired by that of epidemic spreading or cellular-automaton-based computation related to the density-classification problem. It features two non-fluctuating absorbing states as well as a $\mathcal{Z}_2$-symmetric point in parameter space. The coherent evolution is governed by a kinetically constrained $\mathcal{Z}_2$-symmetric many-body Hamiltonian which is related to the quantum XOR-Fredrickson-Andersen model. We show that the quantum coherent dynamics can stabilize a fluctuating state and we characterize the transition between this active phase and the absorbing states. We also identify a rather peculiar behavior at the $\mathcal{Z}_2$-symmetric point. Here the system approaches the absorbing-state manifold with a dynamics that follows a power-law whose exponent continuously varies with the relative strength of the coherent dynamics. Our work shows how the interplay between coherent and dissipative processes as well as symmetry constraints may lead to a highly intricate non-equilibrium evolution and may stabilize phases that are absent in related classical problems.