论文标题

非卵形椭圆曲线和过度椭圆形雅各比人II

Non-isogenous elliptic curves and hyperelliptic jacobians II

论文作者

Zarhin, Yuri G.

论文摘要

让$ k $成为一个特征的字段,不同于$ 2 $,$ \ bar {k} $它的代数关闭。令$ n \ ge 3 $为一个奇数。令$ f(x)$和$ h(x)$为$ n $多项式,系数为$ k $,而没有重复的根。让我们考虑一下属$(n-1)/2 $ hyperelliptic曲线$ c_f:y^2 = f(x)$和$ c_h:y^2 = h(x)$,以及他们的jacobians $ j(c_f)$ j(c_f)$和$ j(c_h)$,它们是$(n-1)/2 $ d $ - d $ dimemential Abelian abelian abelian abelian abelian abelian abelian abelian abelian abelian pecnecties $ k $ k。 假设其中一个多项式是不可约的,而另一个则完全划分了$ k $。我们证明,如果$ j(c_f)$和$ j(c_h)$在$ \ bar {k} $上是等不的,那么有一个(奇数的)prime $ \ ell $划分$ n $,以至于$ j(c_f)$ j(c_f)$和$ j(c_h)$ cupfield的$ j $ phote的$ phote $ phot $ the eell y eell field $ the Ell y y y $ the Ell y eell osomorphic fore field $ the Ell $ the Ell osomorphic,

Let $K$ be a field of characteristic different from $2$, $\bar{K}$ its algebraic closure. Let $n \ge 3$ be an odd integer. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other splits completely over $K$. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $\bar{K}$ then there is an (odd) prime $\ell$ dividing $n$ such that the endomorphism algebras of both $J(C_f)$ and $J(C_h)$ contain a subfield that is isomorphic to the field of $\ell$th roots of $1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源