论文标题
在与耗散颗粒(水力)动力学约束下模拟活性剂
Simulating active agents under confinement with Dissipative Particles (hydro)Dynamics
论文作者
论文摘要
我们研究嵌入散装或限制的活性药物明确考虑流体动力学,并通过受到蠕虫模型启发的实施方式模拟游泳者。我们为溶剂开发耗散粒子动力学方案。这种方法使我们不仅可以正确处理流体动力学,而且可以处理热波动。另一方面,这种方法使我们能够研究具有复杂形状的活性药物,从球形胶体到聚合物。首先,我们研究了一个简单的球形胶体。我们分析周围溶剂的速度场的特征,当胶体是散装或限制在圆柱通道中的推动器,拉拔器或中性游泳者时。接下来,我们通过计算均方根位移和当活性胶体在散装或通道中(变化的半径)并在后一种情况下分析方向自相关函数时,来表征其动力学行为。尽管三种研究的蠕动类型的特征是相同的大量扩散,但圆柱限制大大调节了扩散和方向自相关函数。最后,我们将注意力集中在更复杂的形状上:一个活跃的聚合物。我们首先表征结构特征在散装或圆柱限制中计算其回旋半径的结构特征,并将其与没有流体动力学的已知结果进行比较。接下来,我们通过计算其均方位移和长时间扩散来表征活性聚合物的动力学行为。一方面,由于系统散装时流体动力的相互作用,回旋的扩散和半径减小。另一方面,限制的效果是减少回旋的半径,干扰聚合物的运动,从而减少其扩散。
We study active agents embedded in bulk or in confinement explicitly considering hydrodynamics and simulating the swimmers via an implementation inspired by the squirmer model. We develop a Dissipative Particle Dynamics scheme for the solvent. This approach allows us to properly deal not only with hydrodynamics but also with thermal fluctuations. On the other side, this approach enables us to study active agents with complex shapes, ranging from spherical colloids to polymers. To start with, we study a simple spherical colloid. We analyze the features of the velocity fields of the surrounding solvent, when the colloid is a pusher, a puller or a neutral swimmer either in bulk or confined in a cylindrical channel. Next, we characterise its dynamical behaviour by computing the mean square displacement and the long time diffusion when the active colloid is in bulk or in a channel (varying its radius) and analyze the orientation autocorrelation function in the latter case. While the three studied squirmer types are characterised by the same bulk diffusion, the cylindrical confinement considerably modulates the diffusion and the orientation autocorrelation function. Finally, we focus our attention on a more complex shape: an active polymer. We first characterise the structural features computing its radius of gyration when in bulk or in cylindrical confinement, and compare to known results obtained without hydrodynamics. Next, we characterise the dynamical behaviour of the active polymer by computing its mean square displacement and the long time diffusion. On the one hand, both diffusion and radius of gyration decrease due to the hydrodynamic interaction when the system is in bulk. On the other hand, the effect of confinement is to decrease the radius of gyration, disturbing the motion of the polymer and thus reducing its diffusion.