论文标题
分解线性系统的正则随机迭代算法
Regularized randomized iterative algorithms for factorized linear systems
论文作者
论文摘要
用于解决分解线性系统的随机迭代算法,$ \ mathbf a \ Mathbf B \ Mathbf x = \ Mathbf b $带有$ \ Mathbf a \ in {\ Mathbb {r}}} b \ in {\ mathbb {r}}}^{\ ell \ times n} $,以及$ \ mathbf b \ in {\ mathbb {r}}^m $,最近提出了。他们利用分解形式,避免形成矩阵$ \ mathbf c = \ mathbf a \ mathbf b $。但是,他们只能找到最小规范(最小二乘)解决方案。相比之下,正则随机kaczmarz(RRK)算法可以从一致的线性系统中找到某些结构的溶液。在这项工作中,通过将随机的kaczmarz算法或随机高卢人与RRK算法结合使用,我们提出了两种新型的新颖的正则随机性随机化算法,可找到(最小二平方)解决方案,该解决方案具有$ \ nathbf a \ Mathbf a \ MathBf b b b \ nathbf b \ nathbf b. b.thbf x = b $ b. b. b = b x = b = b.我们证明了新算法的线性收敛。给出了计算的示例来说明新算法可以找到$ \ Mathbf A \ Mathbf B \ Mathbf b \ Mathbf X = \ Mathbf B $的稀疏(最小二乘)解决方案,并且可以比现有的随机迭代算法更好a \ mathbf b $。
Randomized iterative algorithms for solving a factorized linear system, $\mathbf A\mathbf B\mathbf x=\mathbf b$ with $\mathbf A\in{\mathbb{R}}^{m\times \ell}$, $\mathbf B\in{\mathbb{R}}^{\ell\times n}$, and $\mathbf b\in{\mathbb{R}}^m$, have recently been proposed. They take advantage of the factorized form and avoid forming the matrix $\mathbf C=\mathbf A\mathbf B$ explicitly. However, they can only find the minimum norm (least squares) solution. In contrast, the regularized randomized Kaczmarz (RRK) algorithm can find solutions with certain structures from consistent linear systems. In this work, by combining the randomized Kaczmarz algorithm or the randomized Gauss--Seidel algorithm with the RRK algorithm, we propose two novel regularized randomized iterative algorithms to find (least squares) solutions with certain structures of $\mathbf A\mathbf B\mathbf x=\mathbf b$. We prove linear convergence of the new algorithms. Computed examples are given to illustrate that the new algorithms can find sparse (least squares) solutions of $\mathbf A\mathbf B\mathbf x=\mathbf b$ and can be better than the existing randomized iterative algorithms for the corresponding full linear system $\mathbf C\mathbf x=\mathbf b$ with $\mathbf C=\mathbf A\mathbf B$.