论文标题

显式和有效的误差估计凸最小化问题

Explicit and efficient error estimation for convex minimization problems

论文作者

Bartels, Sören, Kaltenbach, Alex

论文摘要

我们结合了一种系统的方法,用于导出一般的后验误差估计,用于基于凸双重关系与最近衍生的广义Marini公式的凸最小化问题的后验错误估计。 A后验误差估计基本上是无恒定的,并且适用于大量的变异问题,包括$ p $ -dirichlet问题,以及退化的最小化,障碍和图像脱落问题。另外,这些后验误差估计基于与给定的不合格元素解决方案的比较。对于$ p $ -Dirichlet问题,这些后验错误界限等于残留的A型后验错误界限,因此,可靠且有效。

We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are essentially constant-free and apply to a large class of variational problems including the $p$-Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the $p$-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源