论文标题

用于测量诱导相变的神经网络解码器

Neural-Network Decoders for Measurement Induced Phase Transitions

论文作者

Dehghani, Hossein, Lavasani, Ali, Hafezi, Mohammad, Gullans, Michael J.

论文摘要

已显示开放量子系统可容纳众多外来动力学阶段。测量诱导的量子系统中的纠缠相变是该现象的一个显着示例。但是,对这种相变的幼稚实现需要实验的重复数量,这实际上在大型系统上是不可行的。最近,已经提出,可以通过纠缠参考码头并研究其纯化动态来局部探测这些相变。在这项工作中,我们利用现代的机器学习工具来设计神经网络解码器,以确定以测量结果为条件的参考量楼的状态。我们表明,纠缠相位过渡表现为解码器函数可学习性的急剧变化。我们研究了这种方法的复杂性和可伸缩性,并讨论如何在通用实验中检测纠缠相变。

Open quantum systems have been shown to host a plethora of exotic dynamical phases. Measurement-induced entanglement phase transitions in monitored quantum systems are a striking example of this phenomena. However, naive realizations of such phase transitions requires an exponential number of repetitions of the experiment which is practically unfeasible on large systems. Recently, it has been proposed that these phase transitions can be probed locally via entangling reference qubits and studying their purification dynamics. In this work, we leverage modern machine learning tools to devise a neural network decoder to determine the state of the reference qubits conditioned on the measurement outcomes. We show that the entanglement phase transition manifests itself as a stark change in the learnability of the decoder function. We study the complexity and scalability of this approach and discuss how it can be utilized to detect entanglement phase transitions in generic experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源