论文标题

有效地识别具有相等独立性和歼灭数字的图形

Efficiently recognizing graphs with equal independence and annihilation numbers

论文作者

Rauch, Johannes, Rautenbach, Dieter

论文摘要

图$ g $的歼灭数字$ a(g)$是$ g $的独立数$α(g)$的有效计算上限。最近,希勒观察到,由于拉尔森和胡椒,$α(g)= a(g)$ g $的表征是错误的。由于识别这些图的已知有效算法是基于此特征的,因此识别图$ g $与$α(g)= a(g)$的复杂性再次被打开。我们证明这些图确实可以有效地识别。更普遍地,我们表明,使用$α(g)\ geq a(g) - \ ell $识别图形$ g $是使用$ \ ell $作为参数的固定参数。

The annihilation number $a(G)$ of a graph $G$ is an efficiently computable upper bound on the independence number $α(G)$ of $G$. Recently, Hiller observed that a characterization of the graphs $G$ with $α(G)=a(G)$ due to Larson and Pepper is false. Since the known efficient algorithm recognizing these graphs was based on this characterization, the complexity of recognizing graphs $G$ with $α(G)=a(G)$ was once again open. We show that these graphs can indeed be recognized efficiently. More generally, we show that recognizing graphs $G$ with $α(G)\geq a(G)-\ell$ is fixed parameter tractable using $\ell$ as parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源