论文标题
锦标赛中定向的汉密尔顿周期:罗森菲尔德的猜想证明
Oriented Hamiltonian Cycles in Tournaments: a Proof of Rosenfeld's Conjecture
论文作者
论文摘要
罗森菲尔德(Rosenfeld)在1974年猜想有一个整数n> 8,因此每次n> n的比赛都包含每个非导向订单n的周期。我们证明,恰好有35个例外,每次订单n> 2的比赛都包含每个非导向的阶数,2 <m <n+1。
Rosenfeld in 1974 conjectured that there is an integer N > 8 such that every tournament of order n > N contains every non-directed cycle of order n. We prove that, with exactly 35 exceptions, every tournament of order n > 2 contains each non-directed cycle of order m, 2 < m < n+1.