论文标题

在与对数相互作用的Dean-Kawasaki型方程与Dean-Kawasaki型方程式上

On a particle approximation to the Dean-Kawasaki type equation with logarithmic interactions

论文作者

Ding, Hao

论文摘要

我们考虑$ \ mathbb {t} $上的一类Dean-Kawasaki类型方程,并具有对数的排斥相互作用,具体取决于反向温度$β$以及与噪声部分的新频谱近似,该频谱近似近似于Otto的$ \ Mathbb {p}(\ Mathbbbbbb {t})$。遵循瓦斯坦斯坦空间上布朗尼运动的内在结构的想法,我们构建了一类粒子模型,这些模型的波动流体动力极限(称为$ p_t^β$)是解决此类方程式的玛格尔问题的解决方案。具体而言,我们给出了粒子近似的定量收敛速率,这使我们能够根据$β$确定唯一的极限分布。 随着逆温度的上升,排斥相互作用的正则化效应变得更强烈。我们证明存在三个阈值$ 0<λ_0\leqλ_1<λ_2$,具体取决于噪声,以至于$β>λ_0$,$ p_t^β$是$ \ mathbb {p}(p}(\ mathbb {t} t}),当$β>λ_1$时,相对于Lebesgue的测量,$ P_T^β$绝对是连续的。当$β>λ_2$时,$ p_t^β$rényi熵的期望满足了指数衰减估计。

We consider a class of Dean-Kawasaki type equations on $\mathbb{T}$ with logarithmic repulsive interactions depending on the inverse temperature $β$ and a new spectral approximation to the noise part, which approximately features Otto's metric in $\mathbb{P}(\mathbb{T})$. Following the idea of intrinsic constructions of Brownian motions on the Wasserstein space, we construct a class of particle models whose fluctuating hydrodynamic limits, denoted as $p_t^β$, are solutions to the martingale problems of this class of equations. Specifically, we give a quantitative convergence rate of the particle approximation, which allows us to identify a unique limit distribution depending on $β$. As the inverse temperature rises, the regularizing effect of repulsive interactions becomes stronger. We prove that there exists three thresholds $0<λ_0\leqλ_1<λ_2$ depending on the noise such that, when $β>λ_0$, $p_t^β$ is a non-atomic measure process in $\mathbb{P}(\mathbb{T})$; when $β>λ_1$, $p_t^β$ is absolutely continuous with respect to Lebesgue measure almost surely; when $β>λ_2$, the expectation of the Rényi entropy of $p_t^β$ satisfies an exponential decay estimate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源