论文标题

对单击率预测的长期用户行为序列上的对抗过滤建模

Adversarial Filtering Modeling on Long-term User Behavior Sequences for Click-Through Rate Prediction

论文作者

Li, Xiaochen, Zhong, Rui, Liang, Jian, Liu, Xialong, Zhang, Yu

论文摘要

丰富的用户行为信息对于捕获和了解用户对点击率(CTR)预测的利益非常重要。为了改善丰富性,收集长期行为成为学院和行业中的典型方法,但以增加在线存储和潜伏期为代价。最近,研究人员提出了几种缩短长期行为序列,然后对用户兴趣进行建模的方法。这些方法有效地降低了在线成本,但不能很好地处理长期用户行为中的嘈杂信息,这可能会大大恶化CTR预测的性能。为了获得更好的成本/性能权衡,我们提出了一种新颖的对抗过滤模型(ADFM),以建模长期用户行为。 ADFM使用层次聚合表示来压缩原始行为序列,然后学会使用对抗过滤机制去除无用的行为信息。选定的用户行为被送入CTR预测的兴趣提取模块中。公共数据集和工业数据集的实验结果表明,我们的方法比最先进的模型取得了重大改进。

Rich user behavior information is of great importance for capturing and understanding user interest in click-through rate (CTR) prediction. To improve the richness, collecting long-term behaviors becomes a typical approach in academy and industry but at the cost of increasing online storage and latency. Recently, researchers have proposed several approaches to shorten long-term behavior sequence and then model user interests. These approaches reduce online cost efficiently but do not well handle the noisy information in long-term user behavior, which may deteriorate the performance of CTR prediction significantly. To obtain better cost/performance trade-off, we propose a novel Adversarial Filtering Model (ADFM) to model long-term user behavior. ADFM uses a hierarchical aggregation representation to compress raw behavior sequence and then learns to remove useless behavior information with an adversarial filtering mechanism. The selected user behaviors are fed into interest extraction module for CTR prediction. Experimental results on public datasets and industrial dataset demonstrate that our method achieves significant improvements over state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源