论文标题
软壁广告/QCD模型中的热化和细能力性
Thermalization and prethermalization in the soft-wall AdS/QCD model
论文作者
论文摘要
手性相变的实时动力学以两种风味($ n_f = 2 $)软壁广告/QCD模型进行了研究。为了了解热化的动力学,我们从偏离平衡状态的初始状态中淬灭系统。然后,我们解决了顺序参数的非平衡演化(手性冷凝物$ \langleσ\ equiv \ bar {q} q \ rangle $)。结果表明,该系统在远离临界温度$ t_c $的温度下进行指数放松。放松时间以$ t_c $的分歧,表现出典型的降低速度的行为。从数值上讲,我们提取动态关键指数$ z $,并通过安装缩放行为$σ\ propto t^{ - β/(β/(νz)} $,获得$ z \约2 $,其中平均固定静态关键指数(订单参数临界指数$β= 1/2 $,cortor cortrealation Lengumation corturalation Lengumation tigernation ciror cortrealation Lengumation tircor Enports $ expents $ pertonent $ $ n = 1/2;更有趣的是,有人指出,对于大量的初始状态,该系统将在热化之前的一定时间段内徘徊在准稳态。有人提出,在全息模型的框架中观察到了有趣的现象,称为预素化。在这样的预皮阶段,我们验证该系统的特征是通用动力学缩放定律,并由初始滑动指数$θ= 0 $描述。
The real-time dynamics of chiral phase transition is investigated in a two-flavor ($N_f=2$) soft-wall AdS/QCD model. To understand the dynamics of thermalization, we quench the system from initial states deviating from the equilibrium states. Then, we solve the nonequilibrium evolution of the order parameter (chiral condensate $\langle σ\equiv\bar{q}q\rangle$). It is shown that the system undergoes an exponential relaxation at temperatures away from the critical temperature $T_c$. The relaxation time diverges at $T_c$, presenting a typical behavior of critical slowing down. Numerically, we extract the dynamic critical exponent $z$, and get $z\approx 2$ by fitting the scaling behavior $σ\propto t^{-β/(νz)}$, where the mean-field static critical exponents (order parameter critical exponent $β=1/2$, correlation length critical exponent $ν=1/2$ ) have been applied. More interestingly, it is remarked that, for a large class of initial states, the system would linger over a quasi-steady state for a certain period of time before the thermalization. It is suggested that the interesting phenomenon, known as prethermalization, has been observed in the framework of holographic models. In such prethermal stage, we verify that the system is characterized by a universal dynamical scaling law and described by the initial-slip exponent $θ=0$.