论文标题

语义几何融合多对象跟踪和动态环境中的激光镜。

Semantic Geometric Fusion Multi-object Tracking and Lidar Odometry in Dynamic Environment

论文作者

Ma, Tingchen, Ou, Yongsheng

论文摘要

基于静态场景假设的SLAM系统将在视野中出现移动对象时会引入巨大的估计错误。本文提出了一种基于语义对象检测技术来解决此问题的新型多对象动态激光镜(MLO)。 MLO系统可以提供机器人和语义对象的可靠定位,并在复杂的动态场景中构建长期静态图。为了进行自我估计,我们使用在提取过程中考虑到语义和几何一致性约束的环境特征。过滤功能对语义可移动和未知动态对象具有鲁棒性。同时,提出了使用语义边界框和对象点云的至少正方形估计器,以实现帧之间准确稳定的多对象跟踪。在映射模块中,我们根据绝对轨迹跟踪列表(ATTL)进一步实现动态语义对象检测。然后,静态语义对象和环境特征可用于消除累积的本地化错误并构建纯静态图。公共Kitti数据集的实验表明,与现有技术相比,在复杂场景中,提出的系统可以实现对象的更准确和强大的跟踪,并在复杂场景中获得更好的实时定位精度。

The SLAM system based on static scene assumption will introduce huge estimation errors when moving objects appear in the field of view. This paper proposes a novel multi-object dynamic lidar odometry (MLO) based on semantic object detection technology to solve this problem. The MLO system can provide reliable localization of robot and semantic objects and build long-term static maps in complex dynamic scenes. For ego-motion estimation, we use the environment features that take semantic and geometric consistency constraints into account in the extraction process. The filtering features are robust to semantic movable and unknown dynamic objects. At the same time, a least square estimator using the semantic bounding box and object point cloud is proposed to achieve accurate and stable multi-object tracking between frames. In the mapping module, we further realize dynamic semantic object detection based on the absolute trajectory tracking list (ATTL). Then, static semantic objects and environmental features can be used to eliminate accumulated localization errors and build pure static maps. Experiments on public KITTI data sets show that the proposed system can achieve more accurate and robust tracking of the object and better real-time localization accuracy in complex scenes compared with existing technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源