论文标题

基于圆形共享内存系统的参数化安全验证

Parameterized safety verification of round-based shared-memory systems

论文作者

Bertrand, Nathalie, Markey, Nicolas, Sankur, Ocan, Waldburger, Nicolas

论文摘要

我们考虑分布式算法的参数化验证问题,在这种算法中,无论参与过程的数量如何,都要开发技术以证明给定算法的正确性。由异步二进制共识算法的动机[J.阿斯普尼斯,在嘈杂的环境中快速确定性共识。算法杂志,2002年],我们考虑与共享内存通信的基于圆形的分布式算法。在这些系统中,一个特殊的挑战是1)过程数量是无限的,更重要的是,2)每个回合都有一组新的寄存器。因此,〜验证算法需要管理两个无限源。在这种情况下,我们证明了安全验证问题在于确定所有可能的执行是否避免给定错误状态,这是PSPACE完成的。对于安全验证问题的负面实例,我们还提供了错误执行所需的最小过程数量以及可以涵盖误差状态所需的最小过程。

We consider the parameterized verification problem for distributed algorithms where the goal is to develop techniques to prove the correctness of a given algorithm regardless of the number of participating processes. Motivated by an asynchronous binary consensus algorithm [J. Aspnes, Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002], we consider round-based distributed algorithms communicating with shared memory. A particular challenge in these systems is that 1) the number of processes is unbounded, and, more importantly, 2) there is a fresh set of registers at each round. A~verification algorithm thus needs to manage both sources of infinity. In this setting, we prove that the safety verification problem, which consists in deciding whether all possible executions avoid a given error state, is PSPACE-complete. For~negative instances of the safety verification problem, we~also provide exponential lower and upper bounds on the minimal number of processes needed for an error execution and on the minimal round on which the error state can be covered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源