论文标题

家庭签名定理

The family signature theorem

论文作者

Randal-Williams, Oscar

论文摘要

我们讨论了家庭签名定理的几个版本:在合理的共同体中,使用迈耶的思想,以$ ko [\ tfrac {1} {2} {2}] $ - 使用沙利文的思想,最后在对称$ l $ - 理论中使用ranicki的思想。采用Grothendieck的最新发展 - Witt理论,我们对由此产生的不变性进行了非常完整的分析。作为一种应用,我们证明签名是用于定向庞加莱复合物的纤维化的乘法模量4,这是Hambleton,Korzeniewski和Ranicki的概括,并讨论了De Rham不变性的多重性。

We discuss several versions of the Family Signature Theorem: in rational cohomology using ideas of Meyer, in $KO[\tfrac{1}{2}]$-theory using ideas of Sullivan, and finally in symmetric $L$-theory using ideas of Ranicki. Employing recent developments in Grothendieck--Witt theory, we give a quite complete analysis of the resulting invariants. As an application we prove that the signature is multiplicative modulo 4 for fibrations of oriented Poincaré complexes, generalising a result of Hambleton, Korzeniewski and Ranicki, and discuss the multiplicativity of the de Rham invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源