论文标题
使用深度学习的多尺度重建用于冠状动脉成像的频谱空间数据
Multi-scale reconstruction of undersampled spectral-spatial OCT data for coronary imaging using deep learning
论文作者
论文摘要
冠状动脉疾病(CAD)是一种心血管疾病,发病率和死亡率很高。血管内光学相干断层扫描(IVOCT)被认为是用于诊断和治疗CAD的最佳想象系统。受Nyquist定理的约束,IVOCT中的致密采样具有很高的分辨能力,可以描绘出细胞结构/特征。高空间分辨率和冠状动脉成像的快速扫描速率之间存在权衡。在本文中,我们提出了一种可行的光谱空间采集方法,该方法在光谱和空间结构域中缩小了采样过程,同时保持图像重建的高质量。降级时间表可以提高数据采集速度,而无需进行任何硬件修改。此外,我们提出了一个统一的多尺度重建框架,即多尺度光谱 - 空间 - 磁化网络(MSSMN),以解决具有灵活放大因素的高度下降(压缩)OCT图像。我们将所提出的方法纳入具有临床特征(如支架和钙化病变)的人类冠状动脉样品的光谱结构域OCT(SD-OCT)成像。我们的实验结果表明,与仅在光谱或空间结构域中缩小尺度的数据相比,光谱空间较小的数据可以更好地重建。此外,我们使用MSSMN观察到比使用现有重建方法更好的重建性能。我们的采集方法和多尺度重建框架结合使用,可以在冠状动脉干预期间以高分辨率进行更快的SD-OCT检查。
Coronary artery disease (CAD) is a cardiovascular condition with high morbidity and mortality. Intravascular optical coherence tomography (IVOCT) has been considered as an optimal imagining system for the diagnosis and treatment of CAD. Constrained by Nyquist theorem, dense sampling in IVOCT attains high resolving power to delineate cellular structures/ features. There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging. In this paper, we propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain while maintaining high quality in image reconstruction. The down-scaling schedule boosts data acquisition speed without any hardware modifications. Additionally, we propose a unified multi-scale reconstruction framework, namely Multiscale- Spectral-Spatial-Magnification Network (MSSMN), to resolve highly down-scaled (compressed) OCT images with flexible magnification factors. We incorporate the proposed methods into Spectral Domain OCT (SD-OCT) imaging of human coronary samples with clinical features such as stent and calcified lesions. Our experimental results demonstrate that spectral-spatial downscaled data can be better reconstructed than data that is downscaled solely in either spectral or spatial domain. Moreover, we observe better reconstruction performance using MSSMN than using existing reconstruction methods. Our acquisition method and multi-scale reconstruction framework, in combination, may allow faster SD-OCT inspection with high resolution during coronary intervention.