论文标题
Stylegan-Human:人类一代以数据为中心的奥德赛
StyleGAN-Human: A Data-Centric Odyssey of Human Generation
论文作者
论文摘要
无条件的人类形象生成是视觉和图形中的重要任务,它可以在创意行业中进行各种应用。该领域的现有研究主要集中于“网络工程”,例如设计新组件和目标功能。这项工作采用以数据为中心的观点,并研究了“数据工程”中的多个关键方面,我们认为这将补充当前的实践。为了促进一项全面的研究,我们收集并注释了一个大规模的人类图像数据集,其中包含超过230k样品捕获多样化的姿势和纹理。配备了这个大型数据集,我们严格研究了基于Stylegan的人类发电的数据工程的三个基本因素,即数据大小,数据分布和数据对齐。广泛的实验揭示了几个有价值的观察到W.R.T.这些方面:1)使用Vanilla Stylegan训练高保真无条件的人类生成模型,需要大规模数据,超过40k的图像。 2)与长尾相比,平衡的训练集有助于通过稀有的面孔提高发电质量,而仅仅平衡服装纹理分布并不能有效地改善。 3)带有身体中心的人类gan模型比对齐的模型优于用面部中心或骨盆点作为对齐锚的训练的模型。此外,还证明了模型动物园和人类编辑应用,以促进社区的未来研究。
Unconditional human image generation is an important task in vision and graphics, which enables various applications in the creative industry. Existing studies in this field mainly focus on "network engineering" such as designing new components and objective functions. This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering", which we believe would complement the current practice. To facilitate a comprehensive study, we collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures. Equipped with this large dataset, we rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment. Extensive experiments reveal several valuable observations w.r.t. these aspects: 1) Large-scale data, more than 40K images, are needed to train a high-fidelity unconditional human generation model with vanilla StyleGAN. 2) A balanced training set helps improve the generation quality with rare face poses compared to the long-tailed counterpart, whereas simply balancing the clothing texture distribution does not effectively bring an improvement. 3) Human GAN models with body centers for alignment outperform models trained using face centers or pelvis points as alignment anchors. In addition, a model zoo and human editing applications are demonstrated to facilitate future research in the community.