论文标题
用球形簇限制暗物质光环的形状
Constraining the shape of dark matter haloes with globular clusters
论文作者
论文摘要
我们探讨了如何使用观察方法来探索弥漫性恒星光线和球状簇(GC)(GCS)来追踪其宿主光环的物质分布。为此,我们使用$(34.4〜 \ rm cmpc)的117个模拟暗物质(DM)光环^3 $ e-Mosaics项目的周期性卷。对于每个光晕,我们将恒星表面亮度和GC投影数密度图与DM和总质量的表面密度进行比较。我们发现在恒星光和GC中鉴定出的主要结构与DM和总质量的结构紧密相对应。我们的方法不受卫星的存在影响,其精度通过淡淡的GC样品提高了。我们恢复了恒星表面亮度和GC数密度之间的密切关系与DM的密度之间,这表明DM的轮廓可以从恒星和GC中准确恢复($σ\ leq0.5〜 $ DEX)。我们量化了DM,恒星和GC的预计形态,发现恒星和GC比DM更扁平。此外,恒星和GC的分布的半高轴通常被$ \ sim 10〜 $度与DM的分配未对准。我们证明,弥漫性恒星光和GC的深度成像可以在其宿主光环的形状,轮廓和方向上构成约束。这些结果延伸至带有中央星系的光环$ m _ {\ star} \ geq10^{10} 〜m _ {\ odot} $,该分析将适用于欧几里得,罗马和鲁宾观察者的未来数据。
We explore how diffuse stellar light and globular clusters (GCs) can be used to trace the matter distribution of their host halo using an observational methodology. For this, we use 117 simulated dark matter (DM) haloes from the $(34.4~\rm cMpc)^3$ periodic volume of the E-MOSAICS project. For each halo, we compare the stellar surface brightness and GC projected number density maps to the surface densities of DM and total mass. We find that the dominant structures identified in the stellar light and in the GCs correspond closely with those from the DM and total mass. Our method is unaffected by the presence of satellites and its precision improves with fainter GC samples. We recover tight relations between the profiles of stellar surface brightness and GC number density to those of the DM, suggesting that the profile of DM can be accurately recovered from the stars and GCs ($σ\leq0.5~$dex). We quantify the projected morphology of DM, stars and GCs, and find that the stars and GCs are more flattened than the DM. Additionally, the semi-major axes of the distribution of stars and GCs are typically misaligned by $\sim 10~$degrees from that of DM. We demonstrate that deep imaging of diffuse stellar light and GCs can place constraints on the shape, profile and orientation of their host halo. These results extend down to haloes with central galaxies $M_{\star}\geq10^{10}~M_{\odot}$, and the analysis will be applicable to future data from the Euclid, Roman and the Rubin observatories.