论文标题

使用基于机器学习的多阶段系统对现实生活中的患者数据的视力预测

Visual Acuity Prediction on Real-Life Patient Data Using a Machine Learning Based Multistage System

论文作者

Schlosser, Tobias, Beuth, Frederik, Meyer, Trixy, Kumar, Arunodhayan Sampath, Stolze, Gabriel, Furashova, Olga, Engelmann, Katrin, Kowerko, Danny

论文摘要

在眼科中,玻璃体内手术药物疗法(IVOM)是与与年龄相关的黄斑变性(AMD),糖尿病黄斑水肿(DME)以及视网膜静脉闭塞(RVO)相关的疾病的广泛治疗。然而,在现实环境中,尽管治疗,患者经常会遭受年数的视力损失,而视力(VA)的预测(VA)以及最早可能在现实条件下可能检测到恶化,这是由于异质性和不完整的数据而具有挑战性的。在这项贡献中,我们提出了一个与研究兼容的数据语料库开发的工作流程,该研究语料库融合了德国最大医院眼科部的不同IT系统。广泛的数据语料库允许对三种疾病中每一种患者及其VA的预期进展进行预测性陈述。对于疾病AMD,我们发现视力随着时间的流逝显着恶化。在我们提出的多阶段系统中,我们随后将VA进展分为三组“获胜者”,“稳定器”和“失败者”(WSL分类方案)。我们使用深层神经网络集合的OCT生物标志物分类导致分类准确性(F1分数)超过98%,使我们能够完成不完整的OCT文档,同时允许我们利用它们以进行更精确的VA建模过程。我们的VA预测需要至少四次VA检查,并且需要从同一时期开始进行OCT生物标志物,以预测预测时间范围内的VA进展,而我们的预测目前仅限于IVOM / NO治疗。我们在宏平均F1分数中获得了69%的最终预测准确性,而与57.8和50 +-10.7%F1得分的眼科医生相同。

In ophthalmology, intravitreal operative medication therapy (IVOM) is a widespread treatment for diseases related to the age-related macular degeneration (AMD), the diabetic macular edema (DME), as well as the retinal vein occlusion (RVO). However, in real-world settings, patients often suffer from loss of vision on time scales of years despite therapy, whereas the prediction of the visual acuity (VA) and the earliest possible detection of deterioration under real-life conditions is challenging due to heterogeneous and incomplete data. In this contribution, we present a workflow for the development of a research-compatible data corpus fusing different IT systems of the department of ophthalmology of a German maximum care hospital. The extensive data corpus allows predictive statements of the expected progression of a patient and his or her VA in each of the three diseases. For the disease AMD, we found out a significant deterioration of the visual acuity over time. Within our proposed multistage system, we subsequently classify the VA progression into the three groups of therapy "winners", "stabilizers", and "losers" (WSL classification scheme). Our OCT biomarker classification using an ensemble of deep neural networks results in a classification accuracy (F1-score) of over 98 %, enabling us to complete incomplete OCT documentations while allowing us to exploit them for a more precise VA modeling process. Our VA prediction requires at least four VA examinations and optionally OCT biomarkers from the same time period to predict the VA progression within a forecasted time frame, whereas our prediction is currently restricted to IVOM / no therapy. We achieve a final prediction accuracy of 69 % in macro average F1-score, while being in the same range as the ophthalmologists with 57.8 and 50 +- 10.7 % F1-score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源