论文标题

可对角线的thue方程 - 重新审视

Diagonalizable Thue Equations -- revisited

论文作者

Saradha, N., Sharma, Divyum

论文摘要

让$ r,h \ in \ mathbb {n} $带$ r \ geq 7 $,让$ f(x,y)\ in \ mathbb {z} [x,y] $是二进制形式,使得 \ [ f(x,y)=(αx +βy)^r-(γx +Δy)^r, \]其中$α$,$β$,$γ$和$δ$是代数常数,$αδ-βγ\ neq 0 $。我们为THUE不等式的原始解决方案数量建立上限$ 0 <| F(x,y)| \ leq H $,改善了Siegel和Akhtari,Saradha&Sharma的早期结果。

Let $r,h\in\mathbb{N}$ with $r\geq 7$ and let $F(x,y)\in \mathbb{Z}[x ,y]$ be a binary form such that \[ F(x , y) =(αx + βy)^r -(γx + δy)^r, \] where $α$, $β$, $γ$ and $δ$ are algebraic constants with $αδ-βγ\neq 0$. We establish upper bounds for the number of primitive solutions to the Thue inequality $0<|F(x, y)| \leq h$, improving an earlier result of Siegel and of Akhtari, Saradha & Sharma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源