论文标题
用散装粘性运行真空宇宙学
Running vacuum cosmology with bulk viscous matter
论文作者
论文摘要
我们通过将散装粘性物质与运行真空融合在一起来研究宇宙的晚期加速度。真空能量密度随着哈勃参数的平方($ρ_λ\ propto h^2 $)而变化,并且物质的批量粘度系数与膨胀速度($ξ\ propto h $)成正比。我们获得了Friedmann方程的分析解决方案,并使用组合数据集SN1A+CMB+BAO+OHD估算了模型参数。我们将宇宙的年龄评估为14 GYR,略高于$λ$ CDM模型的年龄。但是,与一类散装粘性物质主导的模型所预测的年龄相比,这是一个改进的结果。有趣的是,我们已经获得了物质组成部分的巨额粘度系数,\ times 10^5 $ kg $ \ textnormal m^{ - 1} $ $ \ $ \ textnormal s^{ - 1} $,比大多数材料的范围降低了一个范围的范围,并且落在了范围内,它的价值比两个范围降低了,并落在了范围内,并且跌落了依次的范围,并贴上了fall的范围。哈勃参数是量表因子的降低函数,它在远的未来中达到了恒定值,与进化的最终期限相对应。减速参数显示了从物质主导的减速阶段过渡到真空能量主导的加速阶段,并且过渡红移以$ z_t = 0.73 $获得。 State-Finder分析将我们的模型与目前的$λ$ CDM模型区分开来,$ R-S $轨迹揭示了真空能量的典型行为。相空间分析表明,宇宙在远面的未来朝着机械稳定的状态发展。熵的演化满足了热力学的一般第二定律,并且在未来的进化中最大程度地提高了熵。
We study the late acceleration of the universe by incorporating bulk viscous matter with the running vacuum. The vacuum energy density varies as the squares of the Hubble parameter ($ρ_Λ\propto H^2$), and the coefficient of bulk viscosity of matter is proportional to the velocity of expansion ($ξ\propto H$). We obtained an analytical solution to the Friedmann equations and estimated the model parameters using the combined data set SN1a+CMB+BAO+OHD. We have evaluated the universe's age as 14 Gyr, which is slightly higher than the age-predicted by the $Λ$CDM model. However, it is an improved result compared to the age-predicted by a class of bulk viscous matter-dominated models. Interestingly, we have obtained the coefficient of bulk viscosity of the matter component as $1.316\times 10^5$ kg $\textnormal m^{-1}$ $\textnormal s^{-1}$ which is one to two orders of magnitude less than the value predicted by most of the bulk viscous matter-dominated models and it falls in the range of highly viscous materials found on the earth. The Hubble parameter is a decreasing function of the scale factor, and it attains a constant value in the far future that corresponds to an end deSitter phase of evolution. The deceleration parameter shows a transition from matter-dominated decelerated phase to vacuum energy-dominated accelerating phase, and the transition redshift is obtained as $z_T = 0.73$. The statefinder analysis distinguishes our model from the $Λ$CDM model at present, and the $r-s$ trajectory reveals the quintessence behaviour of the vacuum energy. The phase space analysis shows that the universe is evolving towards a mechanically stable state in the far future. The entropy evolution satisfies the generalised second law of thermodynamics, and the entropy is maximised in the far future evolution.