论文标题

多域文本分类的强大对比对准方法

A Robust Contrastive Alignment Method For Multi-Domain Text Classification

论文作者

Li, Xuefeng, Lei, Hao, Wang, Liwen, Dong, Guanting, Zhao, Jinzheng, Liu, Jiachi, Xu, Weiran, Zhang, Chunyun

论文摘要

多域文本分类可以在各种情况下自动对文本进行分类。由于人类语言的多样性,不同领域中具有相同标签的文本可能有很大差异,这给多域文本分类带来了挑战。当前的高级方法使用私有共享范式,共享编码器捕获域共享的特征,并训练每个域的私人编码器以提取特定于域的特定功能。但是,在现实的情况下,随着新领域不断出现,这些方法遭受效率低下。在本文中,我们提出了一种强大的对比度对准方法,以通过监督的对比度学习来使同一特征空间中各个域的文本分类特征对齐。通过这种方式,我们只需要两个通用功能提取器即可实现多域文本分类。广泛的实验结果表明,我们的方法与最先进的方法相比或有时更高,该方法在私人共享的框架中使用了复杂的多分类器。

Multi-domain text classification can automatically classify texts in various scenarios. Due to the diversity of human languages, texts with the same label in different domains may differ greatly, which brings challenges to the multi-domain text classification. Current advanced methods use the private-shared paradigm, capturing domain-shared features by a shared encoder, and training a private encoder for each domain to extract domain-specific features. However, in realistic scenarios, these methods suffer from inefficiency as new domains are constantly emerging. In this paper, we propose a robust contrastive alignment method to align text classification features of various domains in the same feature space by supervised contrastive learning. By this means, we only need two universal feature extractors to achieve multi-domain text classification. Extensive experimental results show that our method performs on par with or sometimes better than the state-of-the-art method, which uses the complex multi-classifier in a private-shared framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源