论文标题
theta功能,断线和2标记的log gromov-witten不变性
Theta functions, broken lines and 2-marked log Gromov-Witten invariants
论文作者
论文摘要
定义了具有有效的抗态分裂的品种的theta函数,并与某些刺穿的gromov-inten不变性剂有关。在本文中,我们表明,在log calabi-yau表面(x,d)的情况下,具有光滑的非常丰富的反典型除数,我们可以规避刺穿的gromov-witten不变性的概念,并将theta函数及其多重结构与某些2标记的log gromov-gromov-nitten nttent Invariants相关联。这是壁函数与1标记的log gromov-witten不变性之间的对应关系的自然扩展。
Theta functions were defined for varieties with effective anticanonical divisor and are related to certain punctured Gromov-Witten invariants. In this paper we show that in the case of a log Calabi-Yau surface (X,D) with smooth very ample anticanonical divisor we can circumvent the notion of punctured Gromov-Witten invariants and relate theta functions and their multiplicative structure to certain 2-marked log Gromov-Witten invariants. This is a natural extension of the correspondence between wall functions and 1-marked log Gromov-Witten invariants.