论文标题
强化学习产生4个Qubits纠结状态
Reinforcement Learning Generation of 4-Qubits Entangled States
论文作者
论文摘要
我们已经通过机器增强学习(Q-学习)设计了一种人工智能算法,以用4量Qubits构建出色的纠缠状态。这样,该算法能够为四个Qubit纠缠状态的49个真正的SLOCC类中的某些类别生成代表性状态。特别是,可以至少为九个纠缠家庭中的每个家庭达到至少一个真正的SLOCC类。该算法合成的量子电路可能有助于实现这些重要类别的纠缠状态,并得出有关我们宇宙内在特性的结论。我们介绍了一个名为“状态链接图(SLG”)的图形工具,以表示该算法使用的质量矩阵(Q-Matrix)的构建,以构建属于相应纠缠类别的给定客观状态。这使我们能够发现特定纠缠特征与算法需要在量子门集中包含的某些量子门的作用之间的必要连接。相对于选择的量子栅极,发现的量子电路是最佳的。这些SLG使该算法简单,直观且成为有用的资源,用于自动构造量子数量较低的纠缠状态。
We have devised an artificial intelligence algorithm with machine reinforcement learning (Q-learning) to construct remarkable entangled states with 4 qubits. This way, the algorithm is able to generate representative states for some of the 49 true SLOCC classes of the four-qubit entanglement states. In particular, it is possible to reach at least one true SLOCC class for each of the nine entanglement families. The quantum circuits synthesized by the algorithm may be useful for the experimental realization of these important classes of entangled states and to draw conclusions about the intrinsic properties of our universe. We introduce a graphical tool called the state-link graph (SLG) to represent the construction of the Quality matrix (Q-matrix) used by the algorithm to build a given objective state belonging to the corresponding entanglement class. This allows us to discover the necessary connections between specific entanglement features and the role of certain quantum gates that the algorithm needs to include in the quantum gate set of actions. The quantum circuits found are optimal by construction with respect to the quantum gate-set chosen. These SLGs make the algorithm simple, intuitive and a useful resource for the automated construction of entangled states with a low number of qubits.