论文标题
使用Hitran为行星氛围建模不熟悉:NH $ _3 $的微波光谱的测试案例,因此$ _2 $和pH $ _3 $
Using HITRAN to Model Opacities for Planetary Atmospheres: Test case of Microwave Spectra of NH$_3$, SO$_2$ and PH$_3$
论文作者
论文摘要
Hitran分子光谱数据库Hitran2020的最新版本最近发布了许多更新,包括适用于行星大气的主要组成部分的逐线扩展参数(及其温度依赖性)。在这项工作中,已在Hitran应用程序编程接口(HAPI)中实现了适合计算微波光谱的线形代码。这些新的添加允许对木星和金星大气的当前和未来研究的微波吸收物种进行光谱计算,更普遍地涉及气体巨人和岩石行星的大气。 NH $ _3 $分子的反转频谱由H $ _2 $扩大,He and H $ _2 $ O主导了木星的微波区域。而对于金星,必须在金星上云甲板中报告的pH $ _3 $的pH $ _3 $确定其重要性(如果有的话),为了确定其重要性(如果有),则必须由Co $ _2 $扩大的精确光谱数据。对可用的微波实验室的不熟悉度进行了比较,以下结果表明,Hitran数据可与HAPI结合使用,以重现现有的实验测量结果并提供可靠的行星不透性计算。用户应注意在Hitran中选择适当的参数并在HAPI中选择合适的线形函数,具体取决于光谱区域,目标分子物种以及环境化学和热力学条件。
The latest version of the HITRAN molecular spectroscopic database, HITRAN2020, has recently been released featuring many updates, including line-by-line broadening parameters (and their temperature dependence) appropriate for the dominant constituents of planetary atmospheres. In this work, line shape codes suitable for calculating microwave spectra have been implemented within the HITRAN Application Programming Interface (HAPI). These new additions allow for spectroscopic calculations of microwave absorbing species pertinent to current and future studies of the atmospheres of Jupiter and Venus, and more generally for the atmospheres of gas giants and rocky planets. The inversion spectrum of the NH$_3$ molecule broadened by H$_2$, He and H$_2$O dominates the microwave region of Jupiter. Whereas for Venus, accurate spectroscopic data of SO$_2$ broadened by CO$_2$ is necessary in order to determine its significance, if any, on the reported detection of PH$_3$ in the Venusian upper cloud deck. Comparisons have been made to available microwave laboratory opacities and the following results illustrate that HITRAN data can be used in conjunction with HAPI to reproduce the existing experimental measurements and provide reliable calculation of planetary opacities. Users should be mindful regarding selection of appropriate parameters in HITRAN and selecting suitable line shape functions in HAPI, depending on the spectral region, target molecular species, as well as ambient chemical and thermodynamic conditions.