论文标题

Bifrost:可重构DNN加速器的端到端评估和优化

Bifrost: End-to-End Evaluation and Optimization of Reconfigurable DNN Accelerators

论文作者

Stjerngren, Axel, Gibson, Perry, Cano, José

论文摘要

深层神经网络(DNN)的可重新配置加速器有望提高诸如推论延迟之类的性能。 Stonne是可重新配置DNN推理加速器的第一个循环准确的模拟器,它允许探索加速器设计和配置空间。但是,准备用于评估和探索Stonne中的配置空间的模型是手动开发人员耗费的过程,这是研究的障碍。本文介绍了Bifrost,这是一个端到端框架,用于评估和优化可重新配置的DNN推理加速器。 Bifrost是Stonne的前端,并利用TVM深度学习编译器堆栈来解析模型并自动卸载加速计算。我们讨论了双佛罗斯特州对Stonne和其他工具的优势,并使用Bifrost评估了Maeri和Sigma体系结构。此外,Bifrost引入了一个模块,以有效地探索加速器设计和数据流映射空间以优化性能。通过对Maeri体系结构进行调整并为Alexnet生成有效的数据流映射来证明这一点,从而获得了卷积层的平均速度为$ 50 \ times $,并且完全连接的层的$ 11 \ times $ $。我们的代码可在www.github.com/giclab/bifrost上获得。

Reconfigurable accelerators for deep neural networks (DNNs) promise to improve performance such as inference latency. STONNE is the first cycle-accurate simulator for reconfigurable DNN inference accelerators which allows for the exploration of accelerator designs and configuration space. However, preparing models for evaluation and exploring configuration space in STONNE is a manual developer-timeconsuming process, which is a barrier for research. This paper introduces Bifrost, an end-to-end framework for the evaluation and optimization of reconfigurable DNN inference accelerators. Bifrost operates as a frontend for STONNE and leverages the TVM deep learning compiler stack to parse models and automate offloading of accelerated computations. We discuss Bifrost's advantages over STONNE and other tools, and evaluate the MAERI and SIGMA architectures using Bifrost. Additionally, Bifrost introduces a module leveraging AutoTVM to efficiently explore accelerator designs and dataflow mapping space to optimize performance. This is demonstrated by tuning the MAERI architecture and generating efficient dataflow mappings for AlexNet, obtaining an average speedup of $50\times$ for the convolutional layers and $11\times$ for the fully connected layers. Our code is available at www.github.com/gicLAB/bifrost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源