论文标题
磁共振弹性图的位移和压力重建图像:应用于硅脑模型
Displacement and pressure reconstruction from magnetic resonance elastography images: application to an in silico brain model
论文作者
论文摘要
磁共振弹性图是一种运动敏感的图像模态,可以响应机械激发而测量体内组织位移场。本文研究了一种数据同化方法,用于从部分弹性数据中重建硅脑模型中的组织位移和压力场。数据同化是基于参数化 - 背景数据弱方法,其中物理系统的状态(组织位移和压力场)是从可用数据中重建的,假设存在基本的毛弹性生物力学模型。为此,通过对靠近其生理范围的组织模型进行描述的参数空间来模拟相应的毛弹性问题,并通过适当的正交分解计算基础来构建物理形式的歧管。解决最小化问题后,在减少空间中寻求位移和压力重建,该问题既包含降阶模型的结构又包含可用测量结果。在模拟生理大脑的毛弹性力学后,使用合成数据对所提出的管道进行验证。数值实验表明该框架可以表现出位移和压力场的准确关节重建。该方法可以制定为从相关图像中的可用位移数据的任意解析。
Magnetic resonance elastography is a motion-sensitive image modality that allows to measure in vivo tissue displacement fields in response to mechanical excitations. This paper investigates a data assimilation approach for reconstructing tissue displacement and pressure fields in an in silico brain model from partial elastography data. The data assimilation is based on a parametrized-background data weak methodology, in which the state of the physical system -- tissue displacements and pressure fields -- is reconstructed from the available data assuming an underlying poroelastic biomechanics model. For this purpose, a physics-informed manifold is built by sampling the space of parameters describing the tissue model close to their physiological ranges to simulate the corresponding poroelastic problem, and computing a reduced basis via Proper Orthogonal Decomposition. Displacements and pressure reconstruction is sought in a reduced space after solving a minimization problem that encompasses both the structure of the reduced-order model and the available measurements. The proposed pipeline is validated using synthetic data obtained after simulating the poroelastic mechanics of a physiological brain. The numerical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of available displacement data from pertinent images.