论文标题
$ SL(3,\ Mathbb {Z})$ hecke-maass l功能和零密度估计值的近似值
Approximations of $SL(3,\mathbb{Z})$ Hecke-Maass L-Functions and zero density estimates
论文作者
论文摘要
通过假设Ramanujan猜想,我们通过采用非常短的dirichlet多项式来近似于$ sl(3,\ mathbb {z})$与Hecke-maass cusp相关的L功能。为了证明这一点,我们采用了Kuznetsov痕量公式的变体。结果,我们得出了几乎所有$ sl(3,\ mathbb {z})$ hecke-maass cusp forms的零密度估计。
By assuming the Ramanujan conjecture, We approximate the L-functions associated with Hecke-Maass cusp forms over $SL(3,\mathbb{Z})$ by employing very short Dirichlet polynomials. To prove this, we employ a variant of the Kuznetsov trace formula. As a result, we derive a zero density estimate close to the critical line for almost all $SL(3,\mathbb{Z})$ Hecke-Maass cusp forms.