论文标题

基于序列的目标硬币预测加密泵泵送

Sequence-Based Target Coin Prediction for Cryptocurrency Pump-and-Dump

论文作者

Hu, Sihao, Zhang, Zhen, Lu, Shengliang, He, Bingsheng, Li, Zhao

论文摘要

随着加密货币市场中泵送计划(P&D)的扩散,必须事先发现此类欺诈活动以提醒潜在的易感投资者。在本文中,我们专注于在预定的泵时间之前预测目标交换中列出的所有硬币的泵概率,我们将其称为目标硬币预测任务。首先,我们对2019年1月至2022年1月在Telegram中组织的最新709个P&D事件进行了全面研究。我们的经验分析揭示了一些有趣的P&D模式,例如泵送硬币表现出内部通道的同质性和通道间的异质性。这里的频道在电报中引用了一种经常用于协调P&D事件的组形式。该观察结果激发了我们开发一种新型的基于序列的神经网络,该网络被称为SNN,该网络将通道的P&D事件历史记录通过位置注意机制编码为序列表示,以提高预测准确性。位置注意力有助于提取有用的信息并减轻噪声,尤其是在序列长度长时间。广泛的实验验证了提出方法的有效性和概括性。此外,我们在GitHub上发布代码和P&D数据集:https://github.com/bayi-hu/pump-and-dump-detection-on-cryptocurrency,并定期更新数据集。

With the proliferation of pump-and-dump schemes (P&Ds) in the cryptocurrency market, it becomes imperative to detect such fraudulent activities in advance to alert potentially susceptible investors. In this paper, we focus on predicting the pump probability of all coins listed in the target exchange before a scheduled pump time, which we refer to as the target coin prediction task. Firstly, we conduct a comprehensive study of the latest 709 P&D events organized in Telegram from Jan. 2019 to Jan. 2022. Our empirical analysis reveals some interesting patterns of P&Ds, such as that pumped coins exhibit intra-channel homogeneity and inter-channel heterogeneity. Here channel refers a form of group in Telegram that is frequently used to coordinate P&D events. This observation inspires us to develop a novel sequence-based neural network, dubbed SNN, which encodes a channel's P&D event history into a sequence representation via the positional attention mechanism to enhance the prediction accuracy. Positional attention helps to extract useful information and alleviates noise, especially when the sequence length is long. Extensive experiments verify the effectiveness and generalizability of proposed methods. Additionally, we release the code and P&D dataset on GitHub: https://github.com/Bayi-Hu/Pump-and-Dump-Detection-on-Cryptocurrency, and regularly update the dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源