论文标题
晶体固体的有限温度表面弹性
Finite-temperature surface elasticity of crystalline solids
论文作者
论文摘要
表面能和表面弹性在很大程度上影响纳米结构的机械响应以及与蒸发和吸附等表面相关的物理现象。因此,在有限温度下研究表面能量对纳米级应用非常感兴趣。然而,计算来自原子集合的表面能和衍生的数量通常仅限于零温度,或者在有限温度下涉及繁琐的热力学整合技术。在这里,我们说明了一种基于高斯相数据包(GPP)方法(在等温度极限中与最大透镜公式相吻合)的技术,以识别非零温度下固体表面的能量和弹性性能。使用此设置,我们研究了温度对六种纯属金属的不同晶体面的影响 - 铜,镍,铝,铁,钨和钒 - 从而涵盖了FCC和BCC晶格结构。尽管所获得的表面能和应力通常会随着温度升高而显示出趋势的下降,但弹性常数在不同材料上没有显示出如此一致的趋势,并且对温度变化非常敏感。通过将所选BCC和FCC材料的表面能密度与通过分子动力学计算的材料进行比较来进行验证。
Surface energies and surface elasticity largely affect the mechanical response of nanostructures as well as the physical phenomenon associated with surfaces such as evaporation and adsorption. Studying surface energies at finite temperatures is therefore of immense interest for nanoscale applications. However, calculating surface energies and derived quantities from atomistic ensembles is usually limited to zero temperature or involve cumbersome thermodynamic integration techniques at finite temperature. Here, we illustrate a technique to identify the energy and elastic properties of surfaces of solids at non-zero temperature based on a Gaussian phase packets (GPP) approach (which in the isothermal limit coincides with a maximum-entropy formulation). Using this setup, we investigate the effect of temperature on the surface properties of different crystal faces for six pure metals -- copper, nickel, alumimum, iron, tungsten and vanadium -- thus covering both FCC and BCC lattice structures. While the obtained surface energies and stresses usually show a decreasing trend with increasing temperature, the elastic constants do not show such a consistent trend across the different materials and are quite sensitive to temperature changes. Validation is performed by comparing the obtained surface energy densities of selected BCC and FCC materials to those calculated via molecular dynamics.