论文标题
淋巴结可还原曲线上的更高率的Brill-Noether基因座
Higher-rank Brill-Noether loci on nodal reducible curves
论文作者
论文摘要
在本文中,我们遵循[arxiv:alg-geom/9511003v1]的想法,在两极分化的节点可还原曲线$(c,c,\ usevernline {w})上处理Brill-Noether理论。我们研究了$ \ upessline {w} $的Brill-Noether Loci-稳定的深度稳定的$ c $,所有不可约组件的排名$ r $,并且具有小坡度。与在平滑情况下发生的情况类似,我们证明了这些基因座与BGN扩展密切相关。此外,我们为这些光彩范围基因座的预期维度产生了不可还原的组件。
In this paper we deal with Brill-Noether theory for higher-rank sheaves on a polarized nodal reducible curve $(C,\underline{w})$ following the ideas of [arXiv:alg-geom/9511003v1]. We study the Brill-Noether loci of $\underline{w}$-stable depth one sheaves on $C$ having rank $r$ on all irreducible components and having small slope. In analogy with what happens in the smooth case, we prove that these loci are closely related to BGN extensions. Moreover, we produce irreducible components of the expected dimension for these Brill-Noether loci.