论文标题

榆树:长尾学习的嵌入和logit余量

ELM: Embedding and Logit Margins for Long-Tail Learning

论文作者

Jitkrittum, Wittawat, Menon, Aditya Krishna, Rawat, Ankit Singh, Kumar, Sanjiv

论文摘要

长尾学习是在偏斜的标签分布下学习的问题,这对标准学习者构成了挑战。该问题最近的几种方法提出了在logit空间中实施合适的边距。这样的技术是SVM背后的指导原理的直观类似物,并且同样适用于线性模型和神经模型。但是,当应用于神经模型时,这种技术不会明确控制学习的嵌入的几何形状。这可能是亚最佳的,因为尾部类别的嵌入可能是分散的,导致这些类别的概括不佳。我们介绍了嵌入式和logit边缘(ELM),这是一种在logit空间中强制边缘的统一方法,并正规化嵌入的分布。这将长尾学习的损失与有关指标嵌入和对比学习的文献中的建议联系在一起。从理论上讲,最大程度地减少提出的ELM目标有助于减少概括差距。 ELM方法显示出良好的表现,并导致更紧密的尾部嵌入。

Long-tail learning is the problem of learning under skewed label distributions, which pose a challenge for standard learners. Several recent approaches for the problem have proposed enforcing a suitable margin in logit space. Such techniques are intuitive analogues of the guiding principle behind SVMs, and are equally applicable to linear models and neural models. However, when applied to neural models, such techniques do not explicitly control the geometry of the learned embeddings. This can be potentially sub-optimal, since embeddings for tail classes may be diffuse, resulting in poor generalization for these classes. We present Embedding and Logit Margins (ELM), a unified approach to enforce margins in logit space, and regularize the distribution of embeddings. This connects losses for long-tail learning to proposals in the literature on metric embedding, and contrastive learning. We theoretically show that minimising the proposed ELM objective helps reduce the generalisation gap. The ELM method is shown to perform well empirically, and results in tighter tail class embeddings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源