论文标题
氧化物核燃料中的热能传输
Thermal Energy Transport in Oxide Nuclear Fuel
论文作者
论文摘要
为了有效捕获核键的能量,先进的核反应堆概念寻求必须承受前所未有的温度和辐射极端的固体燃料。在这些晚期燃料中,辐射下的热能传输与反应堆性能以及反应堆安全性直接相关。由于计算和实验复杂性,核燃料中的热运输科学是一个巨大的挑战。在这里,我们对两种actacinide氧化物的热运输研究进行了全面综述:一种目前正在商业核反应堆,二氧化铀(UO2)和一种高级燃料候选材料,二氧化碳(THO2)。在这两种材料中,都通过晶格波或声子携带热量。裂变事件引起的结晶缺陷有效地散射了声子,并导致燃料性能随着时间的推移而降解。在新的计算和实验工具的支持下,研究人员现在正在开发必要的基础工作,以准确地建模并最终控制晚期核燃料中的热运输。我们首先审查旨在理解完美单晶热传输的研究。缺陷的缺陷使研究重点是声子运输的基本方面。接下来,我们回顾针对缺陷产生和进化的研究。在这里,重点是用作裂变产物造成的损害的离子辐照研究。我们通过讨论旨在在存在辐照缺陷的情况下预测和验证中尺度热传输的建模和实验努力的讨论结束了这项综述。尽管进入这些研究领域的努力是强大的,但在开发整体工具方面仍然具有挑战性的工作来捕获和预测跨环境条件的热能运输。
To efficiently capture the energy of the nuclear bond, advanced nuclear reactor concepts seek solid fuels that must withstand unprecedented temperature and radiation extremes. In these advanced fuels, thermal energy transport under irradiation is directly related to reactor performance as well as reactor safety. The science of thermal transport in nuclear fuel is a grand challenge due to both computational and experimental complexities. Here, we provide a comprehensive review of thermal transport research on two actinide oxides: one currently in use in commercial nuclear reactors, uranium dioxide (UO2), and one advanced fuel candidate material, thorium dioxide (ThO2). In both materials, heat is carried by lattice waves or phonons. Crystalline defects caused by fission events effectively scatter phonons and lead to a degradation in fuel performance over time. Bolstered by new computational and experimental tools, researchers are now developing the foundational work necessary to accurately model and ultimately control thermal transport in advanced nuclear fuel. We begin by reviewing research aimed at understanding thermal transport in perfect single crystals. The absence of defects enables studies that focus on the fundamental aspects of phonon transport. Next, we review research that targets defect generation and evolution. Here, the focus is on ion irradiation studies used as surrogates for damage caused by fission products. We end this review with a discussion of modeling and experimental efforts directed at predicting and validating mesoscale thermal transport in the presence of irradiation defects. While efforts into these research areas have been robust, challenging work remains in developing holistic tools to capture and predict thermal energy transport across widely varying environmental conditions.