论文标题
请注意$ t \ bar {t} $变形矩阵模型和JT超级二重奏
Note on $T\bar{T}$ deformed matrix models and JT supergravity duals
论文作者
论文摘要
在这项工作中,我们计算$ \ Mathcal {n} = 1 $ type 0a的分区功能和0B JT SuperGravity(SJT)在任意属的2D表面上具有多个有限截止边界,基于$ t \ bar {t} $ deformed Super-Schwarzian Theeories。在SJT/矩阵模型二元性方面,我们通过使用拓扑递归关系以及$ t \ bar {t} $ formortation $ t {t} $ formortation在$ t \ bar {t} $变形矩阵模型方面的相应相关函数。我们在通用2D表面上检查分区功能有限截止截止值0A和0B SJT,分别匹配$ t \ bar {t} $变形矩阵模型中关联的相关函数。
In this work we calculate the partition functions of $\mathcal{N}=1$ type 0A and 0B JT supergravity (SJT) on 2D surfaces of arbitrary genus with multiple finite cut-off boundaries, based on the $T\bar{T}$ deformed super-Schwarzian theories. In terms of SJT/matrix model duality, we compute the corresponding correlation functions in the $T\bar{T}$ deformed matrix model side by using topological recursion relations as well as the transformation properties of topological recursion relations under $T\bar{T}$ deformation. We check that the partition functions finite cut-off 0A and 0B SJT on generic 2D surfaces match the associated correlation functions in $T\bar{T}$ deformed matrix models respectively.