论文标题

矩阵因素化,现实和knörrer周期性

Matrix factorizations, Reality and Knörrer periodicity

论文作者

Spellmann, Jan-Luca, Young, Matthew B.

论文摘要

由真实$ k $的定期定理 - 理论和witt理论,以及Hori-Walcher在Landau-Ginzburg Orientientifolds物理学上的作品,我们介绍和研究真实基质因素的研究类别。我们的主要结果是将Knörrer周期性概括为实际基质因素化类别。这些概括在结构上类似于$ KR $ - 理论的$(1,1)$ - 周期性和Grothendieck-Witt理论的$ 4 $ - 周期性。我们使用来自实际分类代表理论的技术,使我们能够将有限群体和离散扭转的主要结果纳入。

Motivated by periodicity theorems for Real $K$-theory and Grothendieck--Witt theory and, separately, work of Hori-Walcher on the physics of Landau-Ginzburg orientifolds, we introduce and study categories of Real matrix factorizations. Our main results are generalizations of Knörrer periodicity to categories of Real matrix factorizations. These generalizations are structurally similar to $(1,1)$-periodicity for $KR$-theory and $4$-periodicity for Grothendieck-Witt theory. We use techniques from Real categorical representation theory which allow us to incorporate into our main results equivariance for a finite group and discrete torsion twists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源