论文标题
次临界状态中的准典型连续接触模型
A quasispecies continuous contact model in a subcritical regime
论文作者
论文摘要
我们研究了一个非平衡动力学模型:$ d $维空间中的明显连续接触模型,$ d \ ge 1 $。与关键方案中的连续接触模型相反,请参见\ cite {kkp},\ cite {kpz},所考虑的模型位于次临界状态中,并包含外部源的额外的自发性均匀分娩。我们证明该系统具有不变的度量。我们还证明,从任何初始分布开始收敛到此不变度度量的过程。
We study a non-equilibrium dynamical model: a marked continuous contact model in $d$-dimensional space, $d \ge 1$. In contrast with the continuous contact model in a critical regime, see \cite{KKP}, \cite{KPZ}, the model under consideration is in the subcritical regime and it contains an additional spontaneous spatially homogeneous birth from an external source. We prove that this system has an invariant measure. We prove also that the process starting from any initial distribution converges to this invariant measure.