论文标题
内核主成分分析高维贝叶斯优化
High Dimensional Bayesian Optimization with Kernel Principal Component Analysis
论文作者
论文摘要
贝叶斯优化(BO)是一种基于替代物的全球优化策略,依赖于高斯过程回归(GPR)模型来近似目标函数和采集功能,以建议候选点。众所周知,对于高维问题,BO不能很好地扩展,因为GPR模型需要更多的数据点才能实现足够的准确性,并且在高维度中,计算优化在计算上变得昂贵。最近的几项旨在解决这些问题的旨在,例如实现在线变量选择或对原始搜索空间的较低维度的次级次数进行搜索的方法。本文提出了我们以前的PCA-BO的工作,该作品学习了线性的子模型,因此提出了一种新颖的内核PCA辅助BO(KPCA-BO)算法,该算法将非线性的子序列嵌入搜索空间中,并在此子manifold上执行BO。直观地,在较低尺寸的子字体上构建GPR模型有助于提高建模准确性,而无需从目标函数中获得更多数据。同样,我们的方法定义了较低尺寸的子字体上的采集函数,从而使采集优化更易于管理。 我们将KPCA-BO与香草bo的性能以及有关可可/BBOB基准套件的多模式问题的PCA-BO进行了比较。经验结果表明,在大多数测试问题上,KPCA-BO在收敛速度方面都优于BO,并且当尺寸增加时,这种好处变得更加重要。对于60D功能,KPCA-BO在许多测试用例中取得比PCA-BO更好的结果。与Vanilla BO相比,它有效地减少了训练GPR模型所需的CPU时间并优化与香草BO相比的采集功能。
Bayesian Optimization (BO) is a surrogate-based global optimization strategy that relies on a Gaussian Process regression (GPR) model to approximate the objective function and an acquisition function to suggest candidate points. It is well-known that BO does not scale well for high-dimensional problems because the GPR model requires substantially more data points to achieve sufficient accuracy and acquisition optimization becomes computationally expensive in high dimensions. Several recent works aim at addressing these issues, e.g., methods that implement online variable selection or conduct the search on a lower-dimensional sub-manifold of the original search space. Advancing our previous work of PCA-BO that learns a linear sub-manifold, this paper proposes a novel kernel PCA-assisted BO (KPCA-BO) algorithm, which embeds a non-linear sub-manifold in the search space and performs BO on this sub-manifold. Intuitively, constructing the GPR model on a lower-dimensional sub-manifold helps improve the modeling accuracy without requiring much more data from the objective function. Also, our approach defines the acquisition function on the lower-dimensional sub-manifold, making the acquisition optimization more manageable. We compare the performance of KPCA-BO to a vanilla BO and to PCA-BO on the multi-modal problems of the COCO/BBOB benchmark suite. Empirical results show that KPCA-BO outperforms BO in terms of convergence speed on most test problems, and this benefit becomes more significant when the dimensionality increases. For the 60D functions, KPCA-BO achieves better results than PCA-BO for many test cases. Compared to the vanilla BO, it efficiently reduces the CPU time required to train the GPR model and to optimize the acquisition function compared to the vanilla BO.