论文标题

使用两个阶段深度学习网络自动化播放器识别和索引

Automated player identification and indexing using two-stage deep learning network

论文作者

Liu, Hongshan, Aderon, Colin, Wagon, Noah, Bamba, Abdul Latif, Li, Xueshen, Liu, Huapu, MacCall, Steven, Gan, Yu

论文摘要

美式足球比赛每年都会引起全球引人的关注。从每场比赛中的视频中识别播放器也是球员参与的索引。处理足球游戏视频提出了巨大的挑战,例如拥挤的设置,扭曲的物体和不平衡的数据,以识别玩家,尤其是泽西岛的数字。在这项工作中,我们提出了一个基于学习的播放器跟踪系统,以自动跟踪玩家并每场比赛参与美国足球比赛。这是一个两阶段的网络设计,旨在突出感兴趣的领域并以高准确性识别泽西岛编号信息。首先,我们利用一个对象检测网络(检测变压器)在拥挤的环境中解决玩家检测问题。其次,我们使用二次卷积神经网络使用泽西岛号码识别的玩家识别玩家,然后将其与游戏时钟子系统同步。最后,系统在数据库中输出一个完整的日志以进行播放索引。我们通过分析足球视频的定性和定量结果来证明玩家跟踪系统的有效性和可靠性。拟议的系统显示出在足球广播视频中实施和分析的巨大潜力。

American football games attract significant worldwide attention every year. Identifying players from videos in each play is also essential for the indexing of player participation. Processing football game video presents great challenges such as crowded settings, distorted objects, and imbalanced data for identifying players, especially jersey numbers. In this work, we propose a deep learning-based player tracking system to automatically track players and index their participation per play in American football games. It is a two-stage network design to highlight areas of interest and identify jersey number information with high accuracy. First, we utilize an object detection network, a detection transformer, to tackle the player detection problem in a crowded context. Second, we identify players using jersey number recognition with a secondary convolutional neural network, then synchronize it with a game clock subsystem. Finally, the system outputs a complete log in a database for play indexing. We demonstrate the effectiveness and reliability of player tracking system by analyzing the qualitative and quantitative results on football videos. The proposed system shows great potential for implementation in and analysis of football broadcast video.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源