论文标题
CATNET:基于跨事物注意的医疗活动预测网络
CATNet: Cross-event Attention-based Time-aware Network for Medical Event Prediction
论文作者
论文摘要
根据历史医疗记录,医疗事件预测(MEP)是医疗领域中的一项基本任务,该任务需要预测医疗事件,包括药物,诊断代码,实验室测试,程序,结果等。该任务具有挑战性,因为医疗数据是具有异质和时间不规则特征的一种复杂时间序列数据。许多考虑了两种特征的机器学习方法已提出用于医疗事件预测。但是,他们中的大多数分别考虑了这两个特征,而忽略了不同类型的医疗事件之间的相关性,尤其是历史医学事件与目标医疗事件之间的关系。在本文中,我们提出了一个基于注意机制的新型神经网络,称为基于跨事物注意的时间感知网络(CATNET),以进行医学事件预测。这是具有以下优点的时间感知,事件感知和任务自适应方法:1)以统一的方式对异质信息和时间信息进行建模,并分别考虑本地和全球范围内的时间不规则特征,2)在不同类型的事件之间通过交叉现象的关注来充分利用相关性。在两个公共数据集(MIMIC-III和EICU)上进行的实验表明,CATNET可以适应不同的MEP任务,并且在各种MEP任务上的其他最先进方法胜过其他最先进的方法。 CATNET的源代码将在接受此手稿后发布。
Medical event prediction (MEP) is a fundamental task in the medical domain, which needs to predict medical events, including medications, diagnosis codes, laboratory tests, procedures, outcomes, and so on, according to historical medical records. The task is challenging as medical data is a type of complex time series data with heterogeneous and temporal irregular characteristics. Many machine learning methods that consider the two characteristics have been proposed for medical event prediction. However, most of them consider the two characteristics separately and ignore the correlations among different types of medical events, especially relations between historical medical events and target medical events. In this paper, we propose a novel neural network based on attention mechanism, called cross-event attention-based time-aware network (CATNet), for medical event prediction. It is a time-aware, event-aware and task-adaptive method with the following advantages: 1) modeling heterogeneous information and temporal information in a unified way and considering temporal irregular characteristics locally and globally respectively, 2) taking full advantage of correlations among different types of events via cross-event attention. Experiments on two public datasets (MIMIC-III and eICU) show CATNet can be adaptive with different MEP tasks and outperforms other state-of-the-art methods on various MEP tasks. The source code of CATNet will be released after this manuscript is accepted.