论文标题

Covid-net US-X:增强的深神经网络,用于通过扩展的线性convex超声增强学习从凸超声成像中检测COVID-19的患者病例

COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19 Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex Ultrasound Augmentation Learning

论文作者

Zeng, E. Zhixuan, Florea, Adrian, Wong, Alexander

论文摘要

随着全球人口继续面临持续的COVID-19大流行的重大负面影响,在COVID-19临床工作流程中,越来越多的PAIME PARE超声(POCUS)成像作为低成本且有效的成像方式。在Covid-19临床工作流程中广泛采用Pocus的主要障碍是专家临床医生的稀缺性,可以解释Pocus检查,从而引起人们对深度学习驱动的临床决策支持系统的极大兴趣,以应对这一挑战。使用Pocus构建深层神经网络的主要挑战是用于捕获超声图像的探针类型的异质性(例如,凸与线性探针),这可能导致视觉外观非常不同。在这项研究中,我们探讨了利用扩展线性 - 凸超声增强学习对产生增强的COVID-19评估的增强的深神经网络的影响,在此,我们将对凸探针数据进行数据增强以及已转化以更好地相似于凸探针数据的线性探针数据。使用有效的深柱抗卷积神经网络进行的实验结果通过机械驱动的设计探索策略(我们称Covid-Net US-X)设计,表明,拟议的扩展线性线性convex超声扩大增强学习可显着提高性能,在测试准确性中获得5.1%,在AUC中获得13.6%的增长。

As the global population continues to face significant negative impact by the on-going COVID-19 pandemic, there has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost and effective imaging modality of choice in the COVID-19 clinical workflow. A major barrier with widespread adoption of POCUS in the COVID-19 clinical workflow is the scarcity of expert clinicians that can interpret POCUS examinations, leading to considerable interest in deep learning-driven clinical decision support systems to tackle this challenge. A major challenge to building deep neural networks for COVID-19 screening using POCUS is the heterogeneity in the types of probes used to capture ultrasound images (e.g., convex vs. linear probes), which can lead to very different visual appearances. In this study, we explore the impact of leveraging extended linear-convex ultrasound augmentation learning on producing enhanced deep neural networks for COVID-19 assessment, where we conduct data augmentation on convex probe data alongside linear probe data that have been transformed to better resemble convex probe data. Experimental results using an efficient deep columnar anti-aliased convolutional neural network designed via a machined-driven design exploration strategy (which we name COVID-Net US-X) show that the proposed extended linear-convex ultrasound augmentation learning significantly increases performance, with a gain of 5.1% in test accuracy and 13.6% in AUC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源