论文标题

使用深卷积神经网络的马X光片分类

Equine radiograph classification using deep convolutional neural networks

论文作者

da Silva, Raniere Gaia Costa, Mishra, Ambika Prasad, Riggs, Christopher, Doube, Michael

论文摘要

目的:评估深卷积神经网络的能力,可以从赛马四肢的48个标准视图中对解剖位置和投影进行分类。 材料和方法:9504马前运动X光片用于训练,验证和测试六个深度学习体系结构,作为开源机器学习框架Pytorch的一部分。 结果:Resnet-34的前1位准确性为0.8408,大多数(88%)错误分类是由于横向性错误。类激活图表明关节形态推动了模型决策。 结论:深度卷积神经网络能够将马射线照相仪分类为48个标准视图,包括对侧向标记的中等歧视,独立于侧面标记。

Purpose: To assess the capability of deep convolutional neural networks to classify anatomical location and projection from a series of 48 standard views of racehorse limbs. Materials and Methods: 9504 equine pre-import radiographs were used to train, validate, and test six deep learning architectures available as part of the open source machine learning framework PyTorch. Results: ResNet-34 achieved a top-1 accuracy of 0.8408 and the majority (88%) of misclassification was because of wrong laterality. Class activation maps indicated that joint morphology drove the model decision. Conclusion: Deep convolutional neural networks are capable of classifying equine pre-import radiographs into the 48 standard views including moderate discrimination of laterality independent of side marker presence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源