论文标题

struct-mdc:网眼修订的无监督的深度完成,从视觉大满贯利用结构规律性

Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural Regularities from Visual SLAM

论文作者

Jeon, Jinwoo, Lim, Hyunjun, Seo, Dong-Uk, Myung, Hyun

论文摘要

基于特征的视觉同时定位和映射(SLAM)方法仅估计提取特征的深度,从而生成稀疏的深度图。为了解决这一稀疏问题,深度完成任务估计稀疏深度的密集深度在诸如勘探之类的机器人应用中变得非常重要。使用视觉猛击的稀疏深度的现有方法主要采用点特征。但是,由于无纹理的环境和稀疏性问题,点特征在保留结构规律方面存在局限性。为了解决这些问题,我们使用线路功能对视觉猛击执行深度完成,这比点功能更好地包含结构规律性。所提出的方法通过使用线路特征进行深度插值,通过执行约束的Delaunay三角剖分来创建凸形船体区域。但是,生成的深度包括低频信息,并且在凸面边界处是不连续的。因此,我们提出了一个网格深度改进(MDR)模块来解决此问题。 MDR模块有效地将输入图像的高频细节转移到了插值深度,并在桥接传统和深度学习的方法中起着至关重要的作用。结构MDC在公共和我们的自定义数据集上的其他最新算法优于其他最先进的算法,甚至超过了某些指标的监督方法。此外,通过严格的消融研究验证了所提出的MDR模块的有效性。

Feature-based visual simultaneous localization and mapping (SLAM) methods only estimate the depth of extracted features, generating a sparse depth map. To solve this sparsity problem, depth completion tasks that estimate a dense depth from a sparse depth have gained significant importance in robotic applications like exploration. Existing methodologies that use sparse depth from visual SLAM mainly employ point features. However, point features have limitations in preserving structural regularities owing to texture-less environments and sparsity problems. To deal with these issues, we perform depth completion with visual SLAM using line features, which can better contain structural regularities than point features. The proposed methodology creates a convex hull region by performing constrained Delaunay triangulation with depth interpolation using line features. However, the generated depth includes low-frequency information and is discontinuous at the convex hull boundary. Therefore, we propose a mesh depth refinement (MDR) module to address this problem. The MDR module effectively transfers the high-frequency details of an input image to the interpolated depth and plays a vital role in bridging the conventional and deep learning-based approaches. The Struct-MDC outperforms other state-of-the-art algorithms on public and our custom datasets, and even outperforms supervised methodologies for some metrics. In addition, the effectiveness of the proposed MDR module is verified by a rigorous ablation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源