论文标题

关于边缘分布的优化

On the Optimization of Margin Distribution

论文作者

Qian, Meng-Zhang, Ai, Zheng, Zhang, Teng, Gao, Wei

论文摘要

在过去的几年中,Margin在学习算法的设计和分析中发挥了重要作用,主要与最小值的最大化一起工作。近年来,根据不同统计数据(例如中缘,平均保证金,边缘差异等),对边缘分布优化的实证研究越来越多,而理论理解的相对匮乏。在这项工作中,我们通过提供一个新的概括误差绑定来迈出一个方向,该误差与边际分布相关,通过结合诸如平均余量和半变化的成分,这是一种新的边距分布统计数据,用于表征边距分布。受理论发现的启发,我们提出了MSVMAV,这是一种有效的方法,可以通过优化利润分布的经验平均保证金和半变异来实现更好的性能。我们最终进行了广泛的实验,以显示提出的MSVMAV方法的优越性。

Margin has played an important role on the design and analysis of learning algorithms during the past years, mostly working with the maximization of the minimum margin. Recent years have witnessed the increasing empirical studies on the optimization of margin distribution according to different statistics such as medium margin, average margin, margin variance, etc., whereas there is a relative paucity of theoretical understanding. In this work, we take one step on this direction by providing a new generalization error bound, which is heavily relevant to margin distribution by incorporating ingredients such as average margin and semi-variance, a new margin statistics for the characterization of margin distribution. Inspired by the theoretical findings, we propose the MSVMAv, an efficient approach to achieve better performance by optimizing margin distribution in terms of its empirical average margin and semi-variance. We finally conduct extensive experiments to show the superiority of the proposed MSVMAv approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源