论文标题
在数据新鲜度和更新成本之间进行最佳折衷
Towards Optimal Tradeoff Between Data Freshness and Update Cost in Information-update Systems
论文作者
论文摘要
在本文中,我们考虑了一个离散的信息更新系统,服务提供商可以主动从信息源检索信息,以更新其数据,并在服务提供商处查询数据。一个例子是基于人群的应用程序。为了使用户满意,该应用程序希望为用户提供新的数据,其中新鲜度是通过信息年龄(AOI)衡量的。但是,维护新数据需要该应用程序经常更新其数据库,这会产生更新成本(例如激励付款)。因此,AOI与需要做出更新决策的服务提供商的更新成本之间存在自然的权衡。为了捕捉这一权衡,我们制定了一个优化问题,目的是最大程度地减少总成本,即陈旧成本的总和(这是AOI的函数)和更新成本。然后,我们为设计有效更新策略的设计提供了两个有用的指南。遵循这些准则,并假设汇总请求到达过程是Bernoulli,我们证明存在基于阈值的策略,在所有在线政策中都是最佳的,因此专注于基于阈值的策略。此外,我们得出了在任何基于阈值的策略下计算长期平均成本并获得最佳阈值的封闭式公式。最后,我们使用综合数据和实际痕迹进行广泛的模拟来验证我们的理论结果,并证明了与几种基线策略相比,基于最佳阈值的策略的出色表现。
In this paper, we consider a discrete-time information-update system, where a service provider can proactively retrieve information from the information source to update its data and users query the data at the service provider. One example is crowdsensing-based applications. In order to keep users satisfied, the application desires to provide users with fresh data, where the freshness is measured by the Age-of-Information (AoI). However, maintaining fresh data requires the application to update its database frequently, which incurs an update cost (e.g., incentive payment). Hence, there exists a natural tradeoff between the AoI and the update cost at the service provider who needs to make update decisions. To capture this tradeoff, we formulate an optimization problem with the objective of minimizing the total cost, which is the sum of the staleness cost (which is a function of the AoI) and the update cost. Then, we provide two useful guidelines for the design of efficient update policies. Following these guidelines and assuming that the aggregated request arrival process is Bernoulli, we prove that there exists a threshold-based policy that is optimal among all online policies and thus focus on the class of threshold-based policies. Furthermore, we derive the closed-form formula for computing the long-term average cost under any threshold-based policy and obtain the optimal threshold. Finally, we perform extensive simulations using both synthetic data and real traces to verify our theoretical results and demonstrate the superior performance of the optimal threshold-based policy compared with several baseline policies.